Mss116p

نویسندگان

  • Nora Sachsenmaier
  • Christina Waldsich
چکیده

RNA folding is an essential aspect underlying RNA-mediated cellular processes. Many RNAs, including large, multi-domain ribozymes, are capable of folding to the native, functional state without assistance of a protein cofactor in vitro. In the cell, trans-acting factors, such as proteins, are however known to modulate the structure and thus the fate of an RNA. DEAD-box proteins, including Mss116p, were recently found to assist folding of group I and group II introns in vitro and in vivo. The underlying mechanism(s) have been studied extensively to explore the contribution of ATP hydrolysis and duplex unwinding in helicase-stimulated intron splicing. Here we summarize the ongoing efforts to understand the novel role of DEAD-box proteins in RNA folding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.

Structured RNAs traverse complex energy landscapes that include valleys representing misfolded intermediates. In Neurospora crassa and Saccharomyces cerevisiae, efficient splicing of mitochondrial group I and II introns requires the DEAD box proteins CYT-19 and Mss116p, respectively, which promote folding transitions and function as general RNA chaperones. To test the generality of RNA misfoldi...

متن کامل

Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification

The abundance of mitochondrial (mt) transcripts varies under different conditions, and is thought to depend upon rates of transcription initiation, transcription termination/attenuation and RNA processing/degradation. The requirement to maintain the balance between RNA synthesis and processing may involve coordination between these processes; however, little is known about factors that regulate...

متن کامل

The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function.

Group I and II introns self-splice in vitro, but require proteins for efficient splicing in vivo, to stabilize the catalytically active RNA structure. Recent studies showed that the splicing of some Neurospora crassa mitochondrial group I introns additionally requires a DEAD-box protein, CYT-19, which acts as an RNA chaperone to resolve nonnative structures formed during RNA folding. Here we sh...

متن کامل

Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance

Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae. Here, we demonstrate that Irc3p is a mit...

متن کامل

DEAD-box proteins can completely separate an RNA duplex using a single ATP.

DEAD-box proteins are ubiquitous in RNA metabolism and use ATP to mediate RNA conformational changes. These proteins have been suggested to use a fundamentally different mechanism from the related DNA and RNA helicases, generating local strand separation while remaining tethered through additional interactions with structured RNAs and RNA-protein (RNP) complexes. Here, we provide a critical tes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2013